The theory of Lorentzian polynomials was recently introduced and systematically developed by Braden-Huh and independently (with part overlap) by Anari-Liu-Gharan-Vinzant. It has many important applications in combinatorics, including a resolution of the strongest version of Mason conjecture and new proofs of the Heron-Rota-Welsh conjecture. In this talk, we explore its applications to geometry. In particular, we establish a series of intersection theoretic inequalities, which we call rKT property. We will discuss the origin of the rKT property in analytic geometry, and its connections with the submodularity for numerical dimension type functions and the sumset estimates for volume type functions. Joint work with J. Hu.